Data Science Applications in Agriculture
This page contains an outline of the topics, content, and assignments for the course. Note that this schedule will be updated as the course progresses, with all changes documented here.
Week | Date | Topic | Teachers | Prepare | Lecture |
---|---|---|---|---|---|
1 | 1/20 | Introduction | Dr. Hostens | 📖 | 🖥️ |
2 | 1/27 | Data science basics | Dr. Hostens | 📖 | 🖥️ |
3 | 2/3 | Visualisation basics | Dr. Hostens | 📖 | 🖥️ |
4 | 2/10 | Simple linear regression | Dr. Hostens | 📖 | 🖥️ |
5 | 2/17 | February break (no class) | |||
6 | 2/24 | Multiple linear regression | Dr. Hostens and S. Hayu | 📖 | 🖥️ |
7 | 3/3 | Logistic regression | Dr. Hostens | 📖 | 🖥️ |
8 | 3/10 | Data joining | Dr. Hostens | 📖 | 🖥️ |
9 | 3/17 | Data transformations - logical vectors | Dr. Hostens | 📖 | 🖥️ |
10 | 3/24 | Data transformations - numerical vectors | Dr. Hostens | 📖 | 🖥️ |
11 | 3/31 | Spring Break (no class) | |||
12 | 4/7 | Data transformations - datetimes & factors | Dr. Hostens | 📖 | factors =>🖥️ datetimes=> 🖥️ |
13 | 4/14 | Decision trees | S. Hayu | 📖 | 🖥️ |
14 | 4/21 | Regular expressions | Dr. Hostens | 📖 | 🖥️ |
15 | 4/28 | Project | S. Hayu & M. van Leerdam | ||
16 | 5/5 | Project | S. Hayu & M. van Leerdam | ||
17 | 5/12 | Project presentation & report | Dr. Hostens |