Data Science Applications in Agriculture

This page contains an outline of the topics, content, and assignments for the course. Note that this schedule will be updated as the course progresses, with all changes documented here.

Week Date Topic Teachers Prepare Lecture
1 1/20 Introduction Dr. Hostens 📖 🖥️
2 1/27 Data science basics Dr. Hostens 📖 🖥️
3 2/3 Visualisation basics Dr. Hostens 📖 🖥️
4 2/10 Simple linear regression Dr. Hostens 📖 🖥️
5 2/17 February break (no class)
6 2/24 Multiple linear regression Dr. Hostens and S. Hayu 📖 🖥️
7 3/3 Logistic regression Dr. Hostens 📖 🖥️
8 3/10 Data joining Dr. Hostens 📖 🖥️
9 3/17 Data transformations - logical vectors Dr. Hostens 📖 🖥️
10 3/24 Data transformations - numerical vectors Dr. Hostens 📖 🖥️
11 3/31 Spring Break (no class)
12 4/7 Data transformations - datetimes & factors Dr. Hostens 📖 factors =>🖥️ datetimes=> 🖥️
13 4/14 Decision trees S. Hayu 📖 🖥️
14 4/21 Regular expressions Dr. Hostens 📖 🖥️
15 4/28 Project S. Hayu & M. van Leerdam
16 5/5 Project S. Hayu & M. van Leerdam
17 5/12 Project presentation & report Dr. Hostens